Additive manufacturing (AM) has become a key element of Industry 4.0, particularly the extrusion AM (EAM) of thermoplastic materials, which is recognized as the most widely used technology. Fused Filament Fabrication (FFF), however, depends on expensive commercially available filaments, making pellet extruder-based EAM techniques more desirable. Large-format EAM systems could benefit from printing lightweight objects with reduced material use and lower power consumption by utilizing hollow rather than solid extrudates. In this study, a custom extruder head was designed and an EAM system capable of extruding inflatable hollow extrudates from a variety of materials was developed. By integrating a co-axial nozzle-needle system, a thermoplastic shell was extruded while creating a hollow core using pressurized nitrogen gas. This method allows for the production of objects with gradient part density and varied mechanical properties by controlling the inflation of the hollow extrudates. The effects of process parameters— such as extrusion temperature, extrusion speed, and gas pressure were investigated—using poly-lactic acid (PLA) and styrene-ethylene-butylene-styrene (SEBS) pellets. The preliminary tests identified the optimal range of these parameters for consistent hollow extrudates. We then varied the parameters to determine their impact on the dimensions of the extrudates, supported by analyses of microscopic images taken with an optical microscope. Our findings reveal that pressure is the most influential factor affecting extrudate dimensions. In contrast, variations in temperature and extrusion speed had a relatively minor impact, whereas changes in pressure led to significant alterations in the extrudate’s size and shape.
Read full abstract