Understanding the link between titanium-aluminium nitride’s (Ti1-xAlxN) physicochemical properties and structural dynamics during operation is essential to designing and fabricating advanced ceramic coatings. Here, we directly visualise the oxidation of Ti1-xAlxN (for x = 0, 0.18, 0.44, & 0.67) coatings from 100 to 1000 °C using environmental transmission electron microscopy (ETEM) imaging and energy dispersive X-ray spectroscopy (EDX) analysis. The high-frame-rate ETEM movies show that oxidation in TiN proceeds at the grain boundaries and cracks; in contrast, Ti1-xAlxN coatings transform from large as-deposited grains into oxide nanoparticles. Moreover, high-resolution ETEM imaging show the presence of anatase TiO2 at the early stages of oxidation across all compositions. Above ∼ 850 °C, the oxide nanoparticles grow through crystal merging, diffusion and recrystallisation to form rutile TiO2. The EDX elemental maps coupled with secondary electron imaging reveal a uniform TiO2 sublayer decorated with increasing coverage of Al2O3 particles for x = 0.18 to 0.44. In contrast, coatings with x = 0.67 reveal a complete in-plane phase separation of Al- and Ti-oxides, which can rationalise their decreasing long-term oxidation resistance. Finally, the study provides unique insight into the real-time structural dynamics underpinning the oxidation resistance of Ti1-xAlxN coatings.