Tororo District, in Eastern Uganda, experienced a dramatic decline in malaria burden starting in 2014 following the implementation of indoor residual spraying of insecticide (IRS) in the setting of repeated long-lasting insecticide treated nets (LLINs) distribution campaigns. However, in 2020 malaria began to resurge in Tororo following a change in the active ingredient used for IRS. In this study, epidemiological measures of malaria were compared shortly after the resurgence between two parishes in Tororo District (Kayoro and Osukuru) and one contiguous parish in Busia District (Buteba), where IRS has never been implemented. A cohort of 483 residents from 80 randomly selected households were followed from August 2020 to January 2021. Mosquitoes were collected every 2 weeks using CDC light traps in rooms where participants slept; parasitemia and gametoctyemia measured every 4 weeks by microscopy and PCR; and symptomatic malaria measured by passive surveillance. The annual entomological inoculation rate was significantly higher in Buteba (108.2 infective bites/person/year), compared to Osukuru (59.0, p = 0.001) and Kayoro (27.4, p<0.001). Overall, parasite prevalence was 19.5% by microscopy and 50.7% by PCR, with no significant differences between the three parishes. Among infected individuals, gametocyte prevalence by PCR was 45.5% and similar between sites. The incidence of malaria was significantly higher in Osukuru (2.46 episodes PPY) compared to Buteba (1.47, p = 0.005) and Kayoro (1.09, p<0.001). For participants over 15 years of age, the risk of symptomatic malaria if microscopic parasitemia was present was higher in Osukuru (relative risk [RR] = 2.99, p = 0.03) compared to Buteba. These findings highlight the complex relationships between measures of malaria transmission, infection, and disease, and the potential for excess disease burden, possibly due to waning immunity, in areas where vector control interventions begin to fail after a sustained period of highly effective control.
Read full abstract