Abstract

Effective malaria control strategies require an accurate understanding of the epidemiology of locally transmitted Plasmodium species. Compared to Plasmodium falciparum infection, Plasmodium vivax has a lower asexual parasitaemia, forms dormant liver-stages (hypnozoites), and is more transmissible. Hence, treatment and diagnostic policies aimed exclusively at P. falciparum are far less efficient against endemic P. vivax. Within sub-Saharan Africa, malaria control programmes justly focus on reducing the morbidity and mortality associated with P. falciparum. However, the recent emphasis on malaria elimination and increased accessibility of more sensitive diagnostic tools have revealed greater intricacies in malaria epidemiology across the continent. Since 2010, the number of studies identifying P. vivax endemic to Africa has expanded considerably, with 88 new scientific reports published since a review of evidence in 2015, approximately doubling the available data. There is evidence of P. vivax in all regions of Africa, apparent from infected vectors, clinical cases, serological indicators, parasite prevalence, exported infections, and P. vivax-infected Duffy-negative individuals. Where the prevalence of microscopic parasitaemia is low, a greater proportion of P. vivax infections were observed relative to P. falciparum. This evidence highlights an underlying widespread presence of P. vivax across all malaria-endemic regions of Africa, further complicating the current practical understanding of malaria epidemiology in this region. Thus, ultimate elimination of malaria in Africa will require national malaria control programmes to adopt policy and practice aimed at all human species of malaria.

Highlights

  • Patients become symptomatic at lower asexual parasitaemia, making it harder to diagnose, and its dormant stages in the liver give rise to multiple

  • Reference lists were consulted for additional data sources and the Malaria Atlas Project parasite rate (PR) and annual parasite incidence (API) databases were queried for records of P. vivax [16,17,18]

  • The current update to the evidence base covered publications from the last three years (December 2014 to April 2018). This identified new evidence from 177 local P. vivax clinical case reports at 96 sites (S1 Table) and 79 community surveys at 56 sites reporting the presence of P. vivax infections (S2 Table)

Read more

Summary

Introduction

Significant funding increases for global malaria control between 2005 and 2010 facilitated a rapid decrease in the burden of malaria, with an estimated 37% reduction in case incidence and a 60% drop in mortality from 2000 to 2015 [1]. A key example of differential response to interventions is the treatment of Plasmodium vivax [7, 8] This parasite’s life cycle differs from that of Plasmodium falciparum by having dormant liver stage hypnozoites, which can later awaken to provoke repeated infection relapses in the weeks, months, and several years following an initial inoculation. This latency is unknown in P. falciparum malaria. The management of endemic transmission of vivax malaria requires inclusion of a haemolytically-toxic 8-aminoquinoline “radical cure” that kills hypnozoites [11]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.