Facial dark spots remain a significant challenge for the cosmetic industry, in terms of providing effective treatment. Using Line-field Confocal Optical Coherence Tomography (LC-OCT), we investigated the internal structural features of photo-aging spot areas and evaluated the efficacy of a skin-brightening cosmetic product. Twenty-six Asian female volunteers, aged between 29 and 65 years, applied a cosmetic product on their entire face twice a day for 2 months. LC-OCT was used to evaluate the dermal-epidermal junction (DEJ) undulation and the volume density of melanin in the epidermis at D0 and D56. Skin brightening and redness were also assessed by photography (SkinCam). Using LC-OCT technology, various microscopic dark spot morphologies, spanning from minimally deformed DEJ to complex DEJ patterns, were identified. Dark spots characterized by slight deformities in the DEJ were predominantly observed in the youngest age group, while older volunteers displayed a wavier pattern. Furthermore, a total of 44 spots were monitored to evaluate the brightening product efficacy. A statistically significant reduction in melanin volumetric density of 7.3% in the spots and 12.3% in their surrounding area was observed after 56 days of product application. In line with these results, an analysis of color parameters using SkinCam reveals a significant increase in brightening and decrease in redness in both pigmented spots and the surrounding skin following application. LC-OCT proves to be a valuable tool for in-depth dark spots characterization and assessment of skin brightening products, enabling various applications in the field of dermatological sciences.