This work addresses a critical challenge in microscale computational electromagnetics for liquid crystal-based reconfigurable components: the inadequate capability of current software to accurately identify and simulate higher-order modes (HoMs) in complex electromagnetic structures. Specifically, commercial simulators often fail to capture modes such as Transverse Electric (TE11) beyond the fundamental transverse electromagnetic (TEM) mode in coaxial liquid crystal phase shifters operating in the terahertz (THz) regime, leading to inaccurate performance predictions and suboptimal designs for telecommunication engineering applications. To address this limitation, we propose a novel diagnostic methodology incorporating three lossless assumptions to enhance the identification and analysis of pseudo-HoMs in full-wave simulators. Our approach theoretically eliminates losses associated with metallic conductivity, dielectric dissipation, and reflection effects, enabling precise assessment of frequency-dependent HoM power propagation alongside the primary TEM mode. We validate the methodology by applying it to a coaxially filled liquid crystal variable phase shifter device structure, underscoring its effectiveness in advancing the design and characterization of THz devices. This work provides valuable insights for researchers and engineers utilizing closed-source commercial simulators in micro- and nano-electromagnetic device development. The findings are particularly relevant for microscale engineering applications, including millimeter-wave (mmW), sub-mmW, and THz systems, with potential impacts on next-generation communication technologies.
Read full abstract