IntroductionOvarian cancer is the leading cause of death among women with gynecological cancer, and novel treatment options are urgently needed. Extracellular vesicles (EVs), including exosomes, may be one of the most promising therapeutic tools for various diseases. In this study, we aimed to investigate the therapeutic effects of adipose-derived stem cell-derived EVs (ADSC-EVs) on ovarian cancer cell lines. Materials and methodsADSCs and the ovarian cancer cell lines SKOV3 and OV90 were used for analysis. ADSC-EVs were isolated through ultracentrifugation and validated using a cryotransmission electron microscope, nanoparticle tracking analysis, and western blotting. Then, the effect of ADSC-EVs on ovarian cancer cells was investigated using IncuCyte and microRNA sequencing. Moreover, the potential functions of miRNAs were evaluated by gain-of function analysis and in silico analysis. ResultsADSC-EVs suppressed SKOV3 and OV90 cell proliferation. In particular, small EVs (sEVs) from ADSCs exhibited a stronger antitumor effect than ADSC-medium/large EVs (m/lEVs). Comparison of the miRNA profiles between ADSC-sEVs and ADSC-m/lEVs, along with downstream pathway analysis, suggested the involvement of the let-7 family. Overexpression of hsa-let-7b-5p and hsa-let-7e-5p significantly suppressed the proliferation of SKOV3 cells. In silico analysis revealed that four potential target genes of hsa-let-7b-5p and hsa-let-7e-5p were significantly associated with the prognoses of the patients. ConclusionADSC-sEVs had a stronger antitumor effect than ADSC-m/lEVs. Hsa-let-7b-5p and hsa-let-7e-5p, which are highly abundant in ADSC-sEVs, suppressed cell proliferation. These findings may open up new possibilities for therapeutic approaches using ADSC-sEVs.