Exposure to environmental microplastics has been demonstrated to impact health. However, its effect on development remains unclear. This study investigated whether consumption of nanoplastics (NPx) during development affects social and cognitive functions in rodents. In this study, we utilized male Institute of Cancer Research mice; they were divided into five subgroups based on the duration of NPx administration. NPx (100 nm) was orally administered via gavage for 6 days from gestational day (GTD) 7, representing the mid-gestation period, and for 5–6 days from GTD13 to birth, representing the late-gestation period; the male offspring were used for experiments. NPx was orally administered for 15 days starting at postnatal day (PND) 21 as the juvenile, PND38 as the adolescent, and PND56 as adulthood. On PND77, offspring were assessed for locomotion, social behavior, and nest-building tests. We observed that NPx administration altered dopamine system responses in GTD13 and PND56 groups. Social behavior was similarly affected by NPx treatment, with GTD13 and PND56 groups displaying decreased familiarity. Additionally, NPx treatment enhanced local field potentials in the prefrontal cortex, nucleus accumbens, and amygdala of GTD7 group and in the striatum of GTD13 group, while amphetamine treatment induced changes of local field potentials compared to saline treatment in the prefrontal cortex and the ventral tegmental area of CTR, GTD7, PND21, and PND56 groups. Taken together, these results showed that NPx treatment induced changes in social behavior partly depending on developmental stage, and these changes are associated with neural circuits innervated by the dopamine system.