The misuse of uranium is a major threat to human health and the environment. In microbial ecosystems, microbes deploy various strategies to cope with uranium-induced stress. However, the exact ecological strategies and mechanisms underlying uranium tolerance in microbes remain unclear. Therefore, this study aimed to investigate the survival strategies and tolerance mechanisms of microbial communities in uranium-contaminated soil and groundwater. Microbial co-occurrence networks and molecular biology techniques were used to analyze the properties of microbes in groundwater and soil samples from various depths of uranium-contaminated areas in Northwest China. Uranium pollution altered microbial ecological strategies. Uranium stress facilitated the formation of microbial community structures, leading to symbiosis. Furthermore, microbes primarily resisted uranium hazards by producing polysaccharides and phosphate groups that chelate uranium, releasing phosphate substances that precipitate uranium, and reducing U(VI) through sulfate- and iron-reducing processes. The relative abundance of metal-methylation genes in soil microorganisms positively correlated with uranium concentration, indicating that soil microorganisms can produce methyl uranium via the Wood-Ljungdahl pathway. Furthermore, soil and groundwater microorganisms demonstrated different responses to uranium stress. This study provides new insights into microbial responses to uranium stress and novel approaches for the bioremediation of uranium-contaminated sites.