We propose a method for simultaneously measuring the front and back surface profiles of transparent optical components. The proposed method combines dual wavelength transmission deflectometry with liquids to record distorted phases at different wavelengths, and then numerically reconstructs the three-dimensional phase information to image the front and back surfaces of the lens. We propose a theoretical model to determine the surface information, and the imaging of achromatic lenses is experimentally demonstrated. Unlike conventional transmission deflectometry, our proposed method supports direct observation of the front and back surface profiles of the optical elements. Compared with other techniques such as interferometry, the proposed setup is simpler to align, has lower cost, and does not require coherent illumination. The proposed method can be applied to normal transmission deflectometry for determining the three-dimensional surface profiles of optical components.
Read full abstract