Ethnopharmacology relevancePalm buds are a natural green resource of the forest, which are not only rich in nutrients but contain a large number of phenolic acids and flavonoids, among other components. It has a variety of biological activities such as antioxidant and uterine smooth muscle stimulation.Aim of the study: To evaluate the safety of palm buds for use as a nutraceutical product and food by evaluating the toxicity, subacute toxicity and genotoxicity of the young palm buds. Also studied for its immune-enhancing activity. Materials and methodsAcute toxicity tests were performed in mice using the maximum tolerance method, and the manifestations of toxicity and deaths were recorded after administration of 10,000 mg/mL for 14 consecutive d (days) of observations. To assess subacute toxicity, mice were treated with palm buds (750, 1500, or 3000 mg/mL) daily for 28 days. The teratogenicity of palm buds was assessed by the Ames test, the mouse bone marrow cell micronucleus test, and the mouse spermatozoa malformation test. In addition, we evaluated the immune-enhancing ability of palm buds by the mouse carbon profile test, delayed-type metamorphosis reaction, and serum hemolysin assay. ResultsIn the acute toxicity study, the Median Lethal Dose (LD50) was greater than 10,000 mg/kg bw in both male and female rats. There were also no deaths or serious toxicities in the subacute study. The no-observed-adverse-effect level (NOAEL) was 3000 mg/kg bw. However, the mice's food intake decreased after one week. The medium and high dose groups had a reducing effect on body weight in mice of both sexes. In addition, the changes in organ coefficients of the liver, kidney and stomach in male mice were significantly higher in the high-dose group (3.23 ± 0.35, 0.75 ± 0.05, 0.57 ± 0.05 g) than in the control group (2.94 ± 0.18, 0.58 ± 0.05, 0.50 ± 0.02 g). Hematological analyses showed that all the indices of the rats in each palm sprout dose group were within the normal range. The results of blood biochemical indicators showed that there was a significant reduction in TP in the blood of male mice in the high-dose group (44.6 ± 7.8 g/L) compared to the control group (58.3 ± 15.1 g/L). In histopathological analysis, none of the significant histopathological changes were observed. The results of the immunological experiment in mice showed that the liver coefficient and thymus coefficient of the high-dose group (8400 mg/kg) were significantly lower than the control group. There was no remarkable difference in auricle swelling between each dose palm bud group (1400, 2800, or 8400 mg/kg) and the control group. The anti-volume number of the high-dose group was significantly increased. ConclusionPalm buds have non-toxic effects in vivo and have little effect on non-specific and cellular immunity in the test mice within the dose range of this experiment. The immunoenhancement in mice is mainly achieved through humoral immunity. In conclusion, our results suggest that palm buds are safe for use as healthcare products and food.