Chirality plays a significant part in many vital processes, and to further our level of understanding, there is a steadily growing interest in enhancing the yield of enantioselective processes. Here, a multilayer with etched grooves is activated in a Kretschmann geometry and consists of alternating platinum Pt, silica SiO2, and silicon Si, as well as a silver Ag layer. Due to the production process, the groove surface exhibits a micrometric roughness, characterized by a typical vibrational mode at ω = 96 MHz. The mode is attributed to a localized acoustic vibration and has been detected as a transmitted signal. The outcomes of the inquiry include plasmonic amplification of the transmitted signal and its wavevector-less nature; in addition, it is shown that the signal is depolarized in reference to the incident beam because of the rough surface. When the Kretschmann scheme is combined with the depolarization brought on by the roughness, a built-in asymmetry results in a higher optical flux of spectrum photons in the depolarized plane than the co-polarized plane, resulting in distinct, enantioselective, and solely polarization-dependent spectral contrast. In conclusion, enantioselectivity is demonstrated for the D,L-penicillamine.
Read full abstract