Microwave energy has been exploited to ignite combustion synthesis (CS) reactions of properly designed powders mixtures, in order to rapidly reach the joining between different kinds of materials, including metals (Titanium and Inconel) and ceramics (SiC). Beside the great advantage offered by CS itself, i.e., rapid and highly localized heat generation, the microwaves selectivity in being absorbed by micrometric metallic powders and not by bulk metallic components represents a further intriguing aspect in advanced materials joining applications, namely the possibility to avoid the exposition to high temperatures of the entire substrates to be joined. Moreover, in case of microwaves absorbing substrates, the competitive microwaves absorption by both substrates and powdered joining material, leads to the possibility of adhesion, interdiffusion and chemical bonding enhancements. In this study, both experimental and numerical simulation results are used to highlight the great potentialities of microwave ignited CS in the joining of advanced materials.
Read full abstract