Impact behavior of materials and structures is of crucial interest. Indeed, every solid may experience collisions in its “mechanical” life. The topic involves a wide range of engineering applications, even in our everyday life: sports protectors [e.g., helmets, Milne et al. (2014)], sensitive portable electronics (Tempelman et al., 2012), bulletproof body armors (Cuniff, 1999), protection systems for buildings and machineries in the civil or defense sectors (NIST, 2005), improvement of crashworthiness in automotive (Schweizerhof et al., 1992), protection of spacecraft and satellite structures from high-velocity micrometeorite or orbital debris impact (NASA, 2015) are some of the most representative. Parallel to the primary requirement of an effective protection, straightforwardly achievable with a massive armor, research efforts are aimed at weight saving due to essential and binding needs, such us better ergonomics and flexibility (body armors), transportability (vehicles), and in general a more judicious use of materials. Thus, the real goal is the high specific toughness. For some decades, the answer to these tasks has been the adoption of multilayer of textile and composite materials, (Abrate, 1998; Hoog, 2006) based on synthetic fibers (e.g., Kevlar®, Dyneema®) that have allowed to reach protection levels previously unimaginable with metallic targets. Nowadays, in the era of nanomaterials, we are raising the bar to atomistic 2D materials, like graphene, coupling high resistance (Lee et al., 2008) and flaw tolerance (Zhang et al., 2012) at the nanoscale, even for possible application to nanoarmours (Pugno et al., 2007; Lee et al., 2012, 2014). Alternatively, the same goal may be pursued through smart structural solutions to be employed even with traditional materials, with all the benefits that this option implies. Nature, having worked over the ages for optimizing defense mechanisms against predators attacks or shock loads, is one of the most inspiring sources: as most remarkable examples we mention the coupled hard-soft layers in the Arapaima gigas fish’s dermis (Yang et al., 2014), the internal undulated walls of the Bombardier Beetle’s (Carabidae, Brachinus) explosion chamber (Lai and Ortiz, 2010), the cross-scale toughening mechanisms in the foam-like structure of dropping fruits (Thielen et al., 2013), dermal armors with scales (Ghosh et al., 2014), and the extreme robustness provided by the spider silk constitutive law (Cranford et al., 2012). On the other side, we could be interested in gaining an efficient strike, like the deadly underwater punch mechanism of the mantis-shrimp (Patek et al., 2005). Upon impact, several complex physical phenomena take place: elastic–plastic deformation and wave propagation, fracture and fragmentation, heat generation (by yielding and friction), changing of material properties due to strain-rate effects up to phase change. Their occurrence and magnitude depend on the impact velocity that may be very low or up to extreme values (>3 km/s for hypervelocity impact), with increasing challenges for armor resistance as well as for its accurate modeling. The theoretical description of the basic aspects of impact mechanics (Stronge, 2000; Goldsmith, 1999, 2001) has reached a level of advanced maturity but it is in a sort of stalemate due to the severe mathematical complexity in representing the above mentioned phenomena, which also mutually interact. With high speed calculators and the development of computational methods (e.g., finite element method, FEM), simulation has become the favorite design tool, allowing optimization studies. Nonetheless, the advent of nanomaterials and bio-inspiration is further questioning the capabilities of these tools and pushing modeling research. The traditional stand-alone experimental approach for armor design according to the philosophy “add material until it stops” it is not viable any more. First, multilayer panels can show crosscurrent behavior in relation to material coupling and interface strength, being even non-optimized for increasing areal density (Signetti and Pugno, 2014, Figure 1). Technological and economic limits in large scale production of nanomaterials, the difficulties in their manipulation or in their structural arrangement into complex bio-inspired structures require a systematic and reliable design process able to provide a tentative target optimum. With mere experiments is nearly impossible to investigate the whole design space for understanding still unexplained mechanism in order to mimic nature and, why not, do even better. Going down to nanoarmours at atomic scale, we enter in a new world with completely unexplored scenarios. Deformation, fracture, contact forces are matter of potentials, electronic interactions, affinity, and reactivity of particles of colliding bodies in relation also to their atomic arrangement. Can we still call it only impact mechanics? Probably not. Some studies have been published about the protection capabilities of graphene nanoarmours via molecular dynamics [see Ozden et al. (2014) and Shang and Wang (2014)]: many considerations can be done with these simulations, which allow the modeling of systems up to 1 M atoms. However, the uncertainty and insensitivity of the behavior at this
Read full abstract