The organ of Corti, the sensory epithelium of hearing in mammals, matures postnatally in the gerbil. Quantitative analyses of the postnatal development of the organ of Corti, including supporting cells and the basilar membrane, were carried out. The morphological study confirmed that maturation of the sensory cells proceeds with a base-to-apex gradient, with the outer hair cells appearing to mature before the inner hair cells. Maturation of the supporting cells and the basilar membrane commenced first in the middle turn. Expansion of the second row of Deiters' cells began at 6 days after birth in the middle turn, before enlargement of the pillar cell heads at 8 days postnatally. Pillar cell head enlargement continued until 20 days postnatally in the middle turn. The tunnel of Corti and spaces of Nuel appeared first in the middle turn between 8 and 10 days postnatally. The maturation of the basilar membrane involved the thickening of the central hyaline layer and a reduction in the epithelial cells on the tympanic aspect. This process continued until about 20 days after birth. The cochlear microphonic potential, whole nerve action potential, and stimulus frequency otoacoustic emissions were recorded from 12 days after birth onward and related to changes in organ of Corti morphology. The results show that changes in the accessory structures continue throughout the period of onset and development of cochlear responses between 12 and 20 days after birth, and may therefore influence the micromechanical responses of the organ of Corti to acoustic stimuli during this period.