One of the characteristic features of sintered steels is the porosity in their microstructure resulting from the compaction and sintering process. This porosity strongly influences the mechanical properties. To enhance the understanding for the structure–property relationship of sintered Astaloy®85Mo with 0.4 wt.%C, a micromechanical modelling approach based on face-centred cubic (fcc) representative volume elements (RVE) is proposed. The fcc-like periodic arrangement of the sintered particles in the RVE enables the consideration of a realistic non-spherical pore morphology. To compare the predictions with experimental results, accompanying uniaxial tensile tests are considered at different pore volume fractions after initial microstructure characterisation. In addition to the effect of pore volume fraction, the influence of sinter necks on the predicted overall strength is also systematically investigated. Despite the fairly simple nature of the underlying fcc structure, the RVE simulations are perfectly capable of reproducing the experimental trend, showing that the elasto-plastic properties decrease with increasing porosity. This is in contrast to analytical predictions, which underestimate the decrease in properties due to spherical pore assumptions. Moreover, the finite element-based simulations reveal a less pronounced influence of the sinter neck shape on the macroscopic behaviour, even though substantial differences in plastic strain localisation are discernible at the microscopic scale.