The present study deals with the effects of Ni on the expression level of three stress proteins, namely, the cytosolic HSP72 and HSP73, and the reticulum-associated GRP94. Experiments were carried out on "Wistar'' female rats daily injected with 4 mg NiCl2 per kg body weight for 1, 3, 5, and 10 days. Another set of experiments were carried out using cell lines, derived from the monkey kidney (COS-7), and from human tumors of the lung (A549) and liver (HepG2). Cells were cultured for 4 days in the permanent presence of 100, 200, or 400 microM NiCl2. In control rats, stress proteins pattern was found to be tissue specific: two protein bands of 96 and 94 kDa were immunodetected with the anti-GRP94 antibody in kidney and liver extracts, whereas only the 96 kDa band was present in ovary extracts. HSP73 was present in kidney, liver, and ovary whereas HSP72 was only found in kidney. In kidney of nickel-treated animals, HSP73 and the 96 kDa proteins were overexpressed whereas HSP72 was strongly down regulated. No such effect was observed in liver or ovary. Similarly, in nickel-treated cell lines, HSP72 was downregulated and GRP94 (96 kDa protein) was overexpressed. HSP73 expression appeared moderately increased in A549 cells but decreased in COS-7 cells. Because long-term caloric restriction was reported to reduce free radical generation in cells, the effect of 1 month food restriction (50%) was tested in rats as a possible way to lower oxidative damages induced by Ni. No significant effect on HSP expression was observed.