Incubation of smooth muscle phosphorylated heavy meromyosin in the presence of myosin light chain kinase, calmodulin, ADP, and Ca2+ results in a decrease of the protein-bound phosphate. The dephosphorylation is not due to phosphatase activity and is dependent on the presence of ADP and the active ternary myosin light chain kinase complex. Using 32P-labeled phosphorylated 20,000-dalton light chains as the phosphate donor, the formation of ATP from ADP can be demonstrated. This reaction requires the presence of Ca2+, calmodulin, and myosin light chain kinase. These results indicate that myosin light chain kinase can catalyze a reverse reaction and form ATP from ADP and phosphorylated substrate. The rate of the reverse reaction, kcat/KLC approximately 0.21 min-1 microM-1, is considerably slower than the forward reaction under similar conditions and is therefore detectable only at relatively high concentrations of myosin light chain kinase. For the reverse reaction, KmADP is approximately 30 microM and ATP is a competitive inhibitor, KIATP approximately 88 microM. For the forward reaction, measured with both isolated light chains and intact myosin, KmATP is approximately 100 microM and ADP is a competitive inhibitor, KiADP approximately 140 microM (myosin) and 120 microM (light chains). Thus, the affinity of ATP for the forward and reverse reactions is similar, but the affinity of ADP is higher for the reverse reaction. From the light chain dependence of the two reactions, the following was calculated: forward, Km = 5 microM, kcat = 1720 min-1, and reverse, Km = 130 microM, kcat = 27 min-1. In contrast to the data obtained with isolated light chains, it is suggested that, with intact myosin as substrate, the Km term is primarily responsible for determining the rate of the reverse reaction. With light chains phosphorylated at serine 19 and threonine 18, it was shown that both sites act as a phosphate donor, although the reverse reaction for threonine 18 is slower than that for serine 19.
Read full abstract