Pacific abalone, Haliotis discus hannai, is an economically important marine mollusk species and an important model animal for studies on ecological, fertilization and developmental biology. While embryonic injection and genome editing have been wildly used in gene function study and trait improvement in many species, they have not been developed in abalones. In this study, we reported an effective method to inject exogenous materials in H. discus hannai unfertilized eggs. The injected eggs could be fertilized at a ratio of 52.6% ± 5.9% and hatch at a ratio of 14.6% ± 1.6%. On the base of this, we further developed an efficient genome editing approach in this species with the transcription activator-like effector nuclease (TALEN) technique. Two TALEN pairs targeting the coding sequence of the abalone nodal gene were assembled and tested. While one of the TALEN pairs showed no detectable mutation efficacy, the other one generated mutations in 50% of the targeted loci. The mutation includes small insertions and deletions and base pair replacements like that reported in other species when the TALEN method was applied. Overall, this is the first study to demonstrate site-specific genome editing in abalone. This work can serve as a reference for future studies focusing on the functional genomics in mollusks.
Read full abstract