The acute shortage of hemodialysis cartridges in Russia, caused by restrictions imposed by the European Union on the supply of high-tech equipment, has led to the nessesity for the production of domestic inexpensive and effective membranes for hemodialysis. In this work, experimental membranes based on polysulfone were obtained and their characterization was carried out. The influence of the blowing agent (polyethylene glycol and polyvinylpyrrolidone) on the structure and transport properties of the obtained membranes was compared. A non-steady state one-dimensional mathematical model of urea dialysis is proposed. A special feature of the model is the accounting the membrane microheterogeneous structure. A comparison of the modeling results with experimental data on the urea concentration time dependences in the dialysate compartment of the dialysis system allows us to conclude that the model adequately describes the system under study. A theoretical assessment of the obtained membrane material efficiency under conditions corresponding to the hemodialysis process, as well as a comparison of urea removal performance with Nephral ST hemodialysis cartridges from Baxter (a company widely represented on the world market) was carried out. It was shown that a polysulfone-based membrane obtained using polyvinylpyrrolidone demonstrates results slightly inferior to those of commercially produced cartridges, which indicates its promise for the production of hollow fiber membranes for hemodialysis cartridges.
Read full abstract