Abstract

The microheterogeneous structure of aqueous tert-butyl alcohol (TBA) solutions is quantified by combining experimental, simulations, and theoretical results. Experimental Raman multivariate curve resolution (Raman-MCR) C-H frequency shift measurements are compared with predictions obtained using combined quantum mechanical and effective fragment potential (QM/EFP) calculations, as well as with molecular dynamics (MD), random mixture (RM), and finite lattice (FL) predictions. The results indicate that the microheterogeneous aggregation in aqueous TBA solutions is slightly less than that predicted by MD simulations performed using either CHARMM generalized force field (CGenFF) or optimized parameters for liquid simulations all atom (OPLS-AA) force fields but slightly more than that in a self-avoiding RM of TBA-like molecules. The results imply that the onset of microheterogeneity in aqueous solutions occurs when solute contact free energies are about an order of magnitude smaller than thermal fluctuations, thus suggesting a fundamental bound of relevance to biological self-assembly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.