Although the systemic effects of progestogens have been extensively studied, little is known in regards to the cellular effects of these compounds. Using a cellular model for vascular (macrophages) and brain (microglial) cells, we studied the effects of various progestogens, either alone or in combination with 17β-estradiol (E(2)) on the activity of matrix metalloproteinase-9 (MMP-9), a proteolytic enzyme involved in vascular remodeling and plaque destabilization in cardiovascular events, blood-brain barrier breakdown in stroke and brain regeneration and neurovascular remodeling during repair phases of brain injury. In the absence of E(2), medroxyprogesterone acetate (MPA), a synthetic progestogen and progesterone (PG) metabolites tended to increase MMP-9 enzyme activity in macrophages and microglial cells, whereas PG decreased such activity in macrophages; exceptions being that MPA and the PG metabolite, pregnanediol (Pdiol) had no effect on macrophage MMP-9 enzyme activity and PG had no effect on microglial cell MMP-9 enzyme activity. In the presence of E(2), an opposite affect was observed whereby MPA and the PG metabolites tended to decrease MMP-9 enzyme activity from macrophages and microglial cells, whereas PG had no effect; exceptions being that MPA and Pdiol had no effect on macrophage MMP-9 enzyme activity. In conclusion, these results demonstrate that the effects of PG, PG metabolites and MPA on MMP-9 enzyme activity differ across vascular and brain cells when administered alone or in combination with E(2) which could have important mechanistic implications for hormone therapy.