Purpose This study aims to describe the effect of ironing process parameters on mixing efficiency and gradient generation in Y-micromixers and microfluidic gradient generators (MGGs), respectively. Design/methodology/approach Material extrusion (MEX) enables the production of miniaturized devices with the advantage of lower manufacturing costs and higher design freedom. However, surface finishing is the most important drawback when it comes to microfluidic applications where flow splitting is not required. First, the effect of ironing line spacing (LS) and speed (IS) on mixing efficiency in Y-micromixers was experimentally investigated. Then, the best ironing settings were chosen to further study the spatial stability of the normalized concentration gradient in MGGs. Findings Lower ironing LS and IS enhance the microchannel surface smoothness. The best combination of ironing parameters (lowest values of LS and IS) leads to an increase in mixing length of 191% at Q = 10 µL/min and 198% at Q = 20 µL/min, with respect to a similar Y-micromixer geometry where ironing was not performed. These findings were applied in the production of a MGG, showing that the normalized concentration gradient in the crosswise flow direction does not depend on the streamwise position when ironing is performed. Originality/value To the best of the authors’ knowledge, for the first time, the possibility of optimizing ironing parameters to enhance the surface roughness in MEX microfluidic devices has been investigated. Ironing of the channel bottom surface allows to reduce ridges-induced flow convection, thus delaying mixing in Y-micromixers and achieving stable concentration gradient in MGGs.
Read full abstract