Current treatments for severe acne include combinations of synthetic anti-inflammatory and antibacterial drugs, which possess numerous side effects. Therefore, this study developed microemulsion-based hydrogel containing lemongrass leaf essential oil (Cymbopogon citratus (DC.) Stapf) and mango seed kernel extract (Mangifera indica Linn) as a potential natural therapy for inflammatory acne. To this end, the microemulsions were first prepared using pseudo-ternary phase diagrams with soybean oil and coconut oil, cremophor RH40, and PEG 400. The optimal formula could load 1% lemongrass oil and 10% mango extract, possessed a spherical droplet size of ~18.98 nm, a zeta potential of -5.56 mV, and a thermodynamic stability. Secondly, the microemulsion-based hydrogel was developed by simple mixing the optimal microemulsion in carbopol-940 hydrogel (3.5% w/w). The product showed a viscosity of ~3728 cPs, a pH of 5.4-6.2, a spreadability of ~24 cm, an in-vitro Franz-cell cumulative release rate of ~80% for polyphenol content and ~60% for citral within 12 h, and a good physicochemical stability of > 3 months. Thirdly, the skin compatibility/irritability of the microemulsion-based hydrogel was determined by the HET-CAM assay, which showed non-irritation level. Finally, the anti-inflammatory activities of the hydrogel, using heat-induced BSA denaturation assay and LPS-stimulated RAW 264.7 NO inhibition assay, was 4-times higher than that of the reference drug Klenzit-C® (adapalene and clindamycin gel). Moreover, the hydrogel possessed strong anti-biofilm activity in Cutibacterium acnes, comparable with Klenzit-C®. Conclusively, the microemulsion-based hydrogel containing lemongrass oil and mango seed extract demonstrated much potentials to be a promising natural drug for acne treatment.
Read full abstract