There is little knowledge about microbial functional community structures and the relationships between microbial communities and nitrogen transformation processes. Here, we investigated the relationships between soil microbial communities and nitrogen mineralisation potentials in a cool temperate forest throughout the growing season. Microbial communities were assessed by quantification of the total bacterial, archaeal, and fungal gene abundances and the bacterial and archaeal amoA gene abundances, functional predictions of bacteria and fungi, and analysis of the bacterial-fungal co-occurrence network. In mid-summer, ectomycorrhizal fungal abundance was significantly higher, whereas the total bacterial abundance was significantly lower. Bacterial and archaeal amoA gene abundances were also significantly higher in mid-summer. However, regardless of the seasonal fluctuation of microbial gene abundances, the net nitrification and nitrogen mineralisation potential did not show clear seasonality. In the network analysis, the microbial community was divided into 13 modules, which were subgroups assumed to have similar niches. Furthermore, two modules that mainly consisted of microbial species of Proteobacteria and Bacteroidetes were significantly and positively correlated with the net nitrification and mineralisation potentials. Our results indicated that microbial subgroups sharing similar niches, instead of total microbial abundances and functional gene abundances, could be important factors affecting the net nitrogen mineralisation potential.