Prescribed burning is commonly used to maintain forest ecosystem functions and reduce the risk of future wildfires. Although many studies have investigated the response of microbial community to wildfires in forest ecosystems, the effects of prescribed burnings on soil microbial community structure are less studied. It is also unclear that how post-fire soil physiochemical properties changes affected soil microbial communities. Here, we studied the impacts of prescribed burning on soil microbiome in three typical temperate forests of northern China by collecting soil physicochemical and high-throughput sequencing for 16S rRNA and 18S rRNA was applied to analyze the diversity and community composition of soil microbes (bacteria and fungi). Compared with pre-fire condition, prescribed burning significantly decreased Chao1 index and altered soil bacterial communities (P < 0.05), whereas it had no significant effect on fungal diversity and community structure of the (P > 0.05). Planctomycetes and Actinobacteria made the greatest contributions to the bacterial community dissimilarity between the pre-fire and post-fire conditions. The main variables influencing the post-fire soil microbial community structure are soil pH, available phosphorus, total nitrogen, and the ratio of soil total carbon to soil total nitrogen, which could account for 73.5% of the variation in the microbial community structure in these stands. Our findings demonstrated a great discrepancy in the responses of bacteria and fungi to prescribed burning. Prescribed burning altered the soil microbial structure by modifying the physicochemical properties. Our results pointed that it is essential to evaluate the impact of prescribed burnings on forest ecosystem functions. These findings provide an important baseline for assessing post-fire microbial recovery in the region and offer critical guidance for restoration efforts.