Soil carbon (C) sequestration plays a critical role in mitigating climate change. Nitrogen (N) deposition greatly affects soil C dynamics by altering C input and output. However, how soil C stocks respond to various forms of N input is not well clear. This study aimed to explore the impact of N addition on soil C stock and to elucidate the underlying mechanisms in an alpine meadow on the eastern Qinghai-Tibet Plateau. The field experiment involved three N application rates and three N forms, using a non-N treatment as a control. After six years of N addition, the total C (TC) stocks in the topsoil (0–15 cm) were markedly increased by an average of 12.1 %, with a mean annual rate of 20.1 ‰, and no difference was found between the N forms. Irrespective of rate or form, N addition significantly increased the topsoil microbial biomass C (MBC) content, which was positively correlated with mineral-associated and particulate organic C content and was identified as the most important factor that affecting the topsoil TC. Meanwhile, N addition significantly increased the aboveground biomass in the years with moderate precipitation and relatively high temperature, which leads to higher C input into soils. Owing to decreased pH and/or activities of β-1,4-glucosidase (βG) and cellobiohydrolase (CBH) in the topsoil, organic matter decomposition was most likely inhibited by N addition, and this inhibiting effect varied under different N forms. Additionally, TC content in the topsoil and subsoil (15–30 cm) exhibited parabolic and positive linear relationship with the topsoil dissolved organic C (DOC) content, respectively, indicating that DOC leaching might be an important influencing factor for soil C accumulation. These findings improve our understanding of how N enrichment affects C cycles in alpine grassland ecosystems and suggest that soil C sequestration in alpine meadows probably increases with N deposition.
Read full abstract