To assess functional differences between the microbiomes of individuals with autoimmune risk-associated human leukocyte antigen (HLA) genetics and autoimmune protection-associated HLA, we performed a metagenomic analysis of stool samples from 72 infants in the All Babies in Southeast Sweden general-population cohort and assessed haplotype-peptide binding affinities. Infants with risk-associated HLA DR3-DQ2.5 and DR4-DQ8 had a higher abundance of known pathogen-associated molecular patterns and virulence related genes than infants with protection-associated HLA DR15-DQ6.2. However, there was limited overlap in the type of inflammatory trigger between risk groups. Supported by a high Firmicutes/Bacteroides ratio and differentially abundant flagellated species, genes related to the synthesis of flagella were prominent in those with HLA DR3-DQ2.5. However, this haplotype had a significantly lower likelihood of binding affinity to flagellin peptides. O-antigen biosynthesis genes were significantly correlated with the risk genotypes and absent from protective genotype association, supported by the differential abundance of gram-negative bacteria seen in the risk-associated groups. Genes related to vitamin B biosynthesis stood out in higher abundance in infants with HLA DR3-DQ2.5/DR4-DQ8 heterozygosity compared to those with autoimmune-protective genetics. Prevotella species and genus were significantly abundant in all infant groups with high risk for autoimmune disease. The potential inflammatory triggers associated with genetic risk for autoimmunity have significant implications. These results suggest that certain HLA haplotypes may be creating the opportunity for dysbiosis and subsequent inflammation early in life by clearing beneficial microbes or not clearing proinflammatory microbes. This HLA gatekeeping may prevent genetically at-risk individuals from benefiting from probiotic therapies by restricting the colonization of those beneficial bacteria.
Read full abstract