The study aimed to predict expression of pituitary transcription factor 1 (PIT1) in pituitary adenomas using habitat, intra-tumoral and peri-tumoral radiomics models. A total of 129 patients with pituitary adenoma (training set, n = 103; test set, n = 26) were retrospectively enrolled. A total of 12, 18, 14, 13, and 14 radiomics features were selected from the ROIintra, ROIintra+peri (ROIintra+2mm, ROIintra+4mm, ROIintra+6mm), and ROIhabitat, respectively. Then, three machine learning algorithms were employed to develop radiomic models, including logistic regression (LR), support vector machines (SVM), and multilayer perceptron (MLP). The performances of the intra-tumoral, combined intra-tumoral and peri-tumoral, and habitat models were evaluated. The peritumoral region (ROI2mm, ROI4mm, ROI6mm) of the combined model with the highest performance was individually selected for further peritumoral analysis. Moreover, a deep learning radiomics nomogram (DLRN) was constructed incorporating clinical characteristics and the peri-tumoral and habitat models for individual prediction. The combined modelintra+2mm based on ROIintra+2mm achieved a better performance (AUC, 0.800) than that of the intra-tumoral model alone (AUC, 0.731). And the habitat model showed a higher performance (AUC, 0.806) than that of the intra-tumoral model. In addition, the performance of the peri-tumoral model based on ROI2mm was 0.694 in the testing set. Furthermore, the DLRN achieved the highest performance of 0.900 in the test set. The DLRN showed the best performance for PIT1 expression in pituitary adenomas, followed by the habitat, combined modelintra+2mm, intra-tumoral model, and peri-tumoral model based on ROI2mm, respectively. These different models are helpful for the model choice in clinical work.
Read full abstract