We propose a model for tropic interaction among the infochemical-producing phytoplankton and non-info chemical-producing phytoplankton and microzooplankton. Volatile information-conveying chemicals (infochemicals) released by phytoplankton play an important role in the food webs of marine ecosystems. Microzooplankton is an ecologically important grazer of phytoplankton for coexistence of a large number of phytoplankton species. Here, we discuss how information transferred by dimethyl sulfide shapes the interaction of phytoplankton. Phytoplankton deterrents may lead to propagation of IPP bloom. The interaction between IPP and microzooplankton follows the Beddington–DeAngelis-type functional response. Analytically, we discuss boundedness, stability and Turing instability of the model system. We perform numerical simulation for temporal (ODE model) as well as a spatial model system. Our numerical investigation shows that microzooplankton grazing refuse of IPP leads to oscillatory dynamics. Increasing diffusion coefficient of microzooplankton shows Turing instability. Time evolution also plays an important role in the stability of system dynamics. The results obtained in this paper are useful to understand the dominance of algal bloom in coastal and estuarine ecosystem.
Read full abstract