BackgroundPseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia.MethodsA cross-sectional study was conducted from August 2022 to August 2023 at Tikur Anbessa Specialized Hospital and Yekatit 12 Hospital Medical College. Culture and identification of P. aeruginosa were done using standard microbiological methods. An antimicrobial susceptibility test was done by Kirby-Bauer disk diffusion according to CLSI recommendations. The microtiter plate assay method was used to determine biofilm-forming capacity. SPSS version 25 was used for data analysis. Bivariate and multivariable logistic regression were used to assess factors associated with multidrug resistance in P. aeruginosa. The Spearman correlation coefficient (rs = 0.266)) was performed to evaluate the relationship between biofilm formation and drug resistance.ResultsThe overall prevalence of P. aeruginosa was 19.6%. High levels of resistance were observed for ciprofloxacin (51.8%), ceftazidime (50.6%), and cefepime (48.2%). The level of multidrug-resistance was 56.6%. The isolates showed better susceptibility to ceftazidime-avibactam (95.2%) and imipenem (79.5%). Overall, 95.2% of P. aeruginosa were biofilm-producing isolates, and 27.7% and 39.8% of isolates were strong and moderate biofilm producers, respectively. A positive correlation and statistically significant relationship was observed between resistance to multiple drugs and the level of biofilm formation (rs = 0.266; p-value = 0.015). Previous history of exposure to ciprofloxacin (OR, 5.1; CI, 1.12–24.7, p-value, 0.032) was identified as an independent associated factor for multidrug resistance in P. aeruginosa.ConclusionThe present study indicates an association between multidrug resistance in P. aeruginosa and its biofilm formation capabilities. Additionally, over half of the isolates were resistant to multiple drugs, with prior use of ciprofloxacin linked to the development of multidrug-resistance. These findings suggest that antibiotic stewardship programs in hospital settings may be beneficial in addressing resistance.
Read full abstract