As the core component of the micro thermophotovoltaic (MTPV) system, the micro combustor with a high and uniform wall temperature distribution is beneficial to improve the energy conversion efficiency. In this paper, a micro tube combustor with converging-diverging channel is proposed and the thermal performance is numerically investigated, compared with that of the micro combustor with cylindrical channel. The effects of inlet velocity of H2/air mixture, dimensionless position and diameter of throat, and solid material on the thermal performance are widely analyzed. Results show that the outer wall temperature and emitter efficiency of the micro combustor with converging-diverging channel are higher than that of the micro combustor with cylindrical channel, and the converging-diverging channel has more uniform temperature distribution. The converging-diverging micro combustor with dimensionless throat position l = 0.375 and dimensionless throat diameter β = 0.4 is more suitable for the application of MTPV system. When H2/air inlet velocity is 11 m/s and H2/air equivalence ratio is 1.0, the mean wall temperature is increased by 82.39 K and the emitter efficiency is increased by 6.59%, while the normalized temperature standard deviation is reduced by 65.85%. Additionally, the use of SiC as wall material can improve the thermal performance of the micro combustor. It is worth noting that this work will offer us significant guidelines for the optimized work of micro tube combustor.