The present study delves into the interaction of a potent cancer-cell photosensitizer Norharmane (NHM) with non-ionic triblock copolymer P123, followed by the assessment of the stability of the formed complex in the presence of β-cyclodextrin (β-CD). Spectroscopic results unveil the modulation of the prototropic equilibrium of NHM within the constrained microheterogeneous medium of the copolymer micelle to be favoured towards the neutral species of NHM over the cationic counterpart; which has been aptly rationalized invoking the key role of hydrophobic interaction in the association process and is further reinforced from steady-state and time-resolved spectroscopic measurements. The micropolarity of the probe-binding site has been evaluated by the archetypal ET(30) analysis revealing that the cationic probe remains in the corona region of the micelle instead of penetrating deeper into the micellar core. Moreover, the effect of β-CD on the stability of the NHM-bound P123 aggregates has also been investigated, revealing that β-CD can be used as a potential host for the release of the micelle-encapsulated drug through an inclusion complex formation with the P123 monomers. The result is expected to be of potential interest from medical perspective owing to the context of efficient drug release at their potential sites.