Modal metasomatism in the Kaapvaal craton lithosphere is well documented in upper mantle xenoliths sampled by both group I (mainly late Cretaceous) and group II (mainly early Cretaceous to late Jurassic) kimberlites in the Kimberley area. The metasomatic style is characterized by introduction of K, H and large ion lithophile/high field strength (LIL/HFS) elements into the lithospheric mantle leading to the crystallization of hydrous potassic phases such as phlogopite and/or K-amphibole. Textures indicate that the hydrous phases either replace pre-existing assemblages in peridotites, forming the metasomatized peridotite suite (phlogopite–K-richterite–peridotites: PKPs) or crystallize from K-rich melts, forming the mica–amphibole–rutile–ilmenite–diopside (MARID) suite of xenoliths. These K-rich assemblages become potential low melting source components for alkaline incompatible trace element enriched magmas. The timing of metasomatism and its temporal and possible genetic relation to kimberlite magmatism is poorly constrained because of the rarity of phases in the metasomatic assemblages suitable for precise dating. Here we present precise sensitive high resolution ion microprobe (SHRIMP) U–Pb formation ages of 88 ± 2 (1σ=1 standard deviation) and 82 ± 3 Ma data for zircons from a K-richterite–phlogopite-bearing metasomatized peridotite (PKP) and a MARID xenolith respectively, sampled by a group I kimberlite. Both average PKP and MARID zircon ages are indistinguishable from emplacement ages of group I kimberlites in the Kimberley area dated at 83 ± 4 (2σ) and 84 ± 0.9 Ma. One exceptionally old age spot of 102 ± 5 Ma from a PKP zircon provides evidence for modal metasomatism predating group I kimberlite emplacement by several millions of years with minor resetting of the U–Pb isotopic system of most analyzed PKP zircons to a group I emplacement age. Detailed textural and mineral chemical analysis, including high energy X-ray mapping and analysis of fluid inclusion daughter crystals, indicates a complex reaction history for both PKPs and MARIDs. U–Pb zircon ages from this study combined with literature data and experimentally derived models for MARID formation are used to suggest that MARID-formation is concurrent and genetically related to both group I and II kimberlite magmatism in the Kimberley area. MARID and PKP zircon ages are also consistent with the idea first proposed by Dawson and Smith (Geochim Cosmochim Acta 41: 309–323, 1977) that metasomatized peridotites may form from interaction of hydrous fluids expelled by solidifying MARID-type melts with peridotitic wall rocks.
Read full abstract