The aim of this study was to characterize ampicillin resistance mechanisms in clinical isolates of Haemophilus influenzae from Portugal. Association between specific patterns of amino acid substitutions in penicillin-binding protein 3 (PBP3) (with or without β-lactamase production) and β-lactam susceptibility as well as genetic relatedness among isolates were investigated. Two-hundred and forty non-consecutive H. influenzae isolates chosen according to their different ampicillin MICs [101 β-lactamase-non-producing ampicillin-resistant (BLNAR) isolates, 80 β-lactamase-producing ampicillin-resistant (BLPAR) isolates and 59 β-lactamase-non-producing ampicillin-susceptible (BLNAS) isolates] were analysed. The β-lactamase-encoding bla(TEM-1) gene was detected by PCR. The ftsI gene encoding PBP3 was sequenced. Genetic relatedness among isolates was examined by PFGE. Of the 240 H. influenzae isolates, 141 had mutations in the transpeptidase domain of the ftsI gene, including most BLNAR strains (94/101, 93.1%) and a high percentage of BLPAR strains (47/80, 58.8%). As previously reported, the latter have been described as β-lactamase-positive amoxicillin/clavulanic acid resistant (BLPACR). The most common amino acid substitutions were identified near the KTG motif: N526K (136/141, 96.5%), V547I (124/141, 87.9%) and N569S (121/141, 85.8%). The 141 strains were divided into 31 ftsI mutation patterns and included six groups (I, IIa, IIb, IIc, IId and III-like). BLNAR strains were genetically diverse but close genetic relationships were demonstrated among BLPACR strains. This study shows that the non-enzymatic mechanism of resistance to β-lactams is widespread among H. influenzae isolates in Portugal. Clonal dissemination of BLPACR strains showing high resistance to ampicillin and reduced susceptibility to amoxicillin/clavulanic acid was documented.
Read full abstract