Changes in the nuclear positioning of specific genes, depending on their expression status, have been observed in a large diversity of physiological processes. However, gene position is poorly documented for immune cells which have been subjected to activation following bacterial infection. Using a pig model, we focused our study on monocyte-derived macrophages and neutrophils, as they are the first lines of defence against pathogens. We examined whether changes in gene expression due to LPS activation imply that genes have repositioned in the nuclear space. We first performed a transcriptomic analysis to identify the differentially expressed genes and then analysed the networks involved during lypopolysaccharide/interferon gamma activation in monocyte-derived macrophages. This allowed us to select four up-regulated (IL1β, IL8, CXCL10 and TNFα) and four down-regulated (VIM, LGALS3, TUBA3 and IGF2) genes. Their expression statuses were verified by quantitative real-time RT-PCR before studying their behaviour in the nuclear space during macrophage activation by means of 3D fluorescence in situ hybridization. No global correlation was found between gene activity and radial positioning. Only TNFα belonging to the highly transcribed MHC region on chromosome 7 became more peripherally localized in relation to the less decondensed state of its chromosome territory (CT) in activated macrophages. The analysis of gene positioning towards their CT revealed that IL8 increases significantly its tendency to be outside its CT during the activation process. In addition, the gene to CT edge distances increase for the three up-regulated genes (IL8, CXCL10 and TNFα) among the four analysed. Contrarily, the four down-regulated genes did not change their position. The analysis of gene behaviour towards their CT was extended to include neutrophils for three (TNFα, IL8 and IL1β) up- and two (IGF2 and TUBA3) down-regulated genes, and similar results were obtained. The analysis was completed by studying the four up-regulated genes in fibroblasts, not involved in immune response. Our data suggest that relocation in the nuclear space of genes that are differentially expressed in activated immune cells is gene and cell type specific but also closely linked to the entire up-regulation status of their chromosomal regions.