Electron beam evaporated thin films of MgO powder synthesized by burning of magnesium ribbon in air and sol-gel technique are studied for their microstructure (SEM), surface topography (AFM), and optical transmission behaviour (UV-visible spectroscopy). MgO thin films are shown to be either continuous or have mesh like morphology. The bar regions are believed to be of magnesium hydroxide formed due to absorption of moisture. Their AFM images exhibit columnar/pyramidal/truncated cone structure, providing support to the 3D Stranski-Krastanov model for film growth. Further, they are shown to have high transmittance (∼90%) in the wavelength range 400–600 nm, but absorb radiation below 350 nm substantially giving signature of a band transition.
Read full abstract