We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO3 (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate. It is suitable for light modulation and transformation. We found that non-metal boron decreases threshold concentrations of the target dopant in many ways. In addition, we earlier determined that the method of boron introduction into the LN charge strongly affects the LN:B crystal structure. So we investigated the point structural defects of two series of LN:Mg:B crystals obtained by different doping methods, in which the stage of dopant introduction was different. We investigated the features of boron cation localization in LN:Mg:B single crystals. We conducted the study using XRD (X-ray diffraction) analysis. We have confirmed that the homogeneous doping method introduces an additional defect (MgV) into the structure of LN:Mg:B single crystals. Vacancies in niobium positions (VNb) are formed as a compensator for the excess positive charge of point structural defects. According to model calculations, boron is localized in most cases in the tetrahedron face common with the vacant niobium octahedron from the first layer (VNbIO6). The energy of the Coulomb interaction is minimal in the LN:Mg:B crystal (2.57 mol% MgO and 0.42 × 10-4 wt% B in the crystal); it was obtained using the solid-phase doping technology. The solid-phase doping technology is better suited for obtaining boron-containing crystals with properties characteristic of double-doped crystals (LN:Mg:B).
Read full abstract