The aim of the study was to purify and characterise recombinant proteins with the potential as an anti-parasite vaccine. Full-length cDNAs encoding seryl-tRNA synthetase (srs-2) were cloned from Haemonchus contortus (HcSRS-2) and Teladorsagia circumcincta (TcSRS-2). TcSRS-2 and HcSRS-2 cDNA (1458bp) encoded proteins of 486 amino acids, each of which was present as a single band of about 55 kDa on SDS-PAGE. Multiple alignments of the protein sequences showed homology of 94% between TcSRS-2 and HcSRS-2, 76–93% with SRS-2s of eight nematodes and 68% with Mus musculus SRS-2. The predicted three-dimensional structures revealed an overall structural homology of TcSRS-2 and HcSRS-2, highly conserved binding and catalytic sites, and minor differences in the tautomerase binding site residues in other nematode SRS-2 homologues. A phylogenetic tree was constructed using helminth and mammalian SRS-2 sequences. Soluble C-terminal SRS-2 proteins were expressed in Escherichia coli strain AY2.4 and purified. Recombinant HcSRS-2 assay shows that the recombinant enzyme was active and stable. The Km and Vmax for ATP were 3.9 ± 1.0 μM and 2.7 ± 0.1 μmol min−1 mg−1 protein, respectively. Antibodies in serum and saliva from field-immune, but not nematode-naïve, sheep recognised recombinant HcSRS-2 and TcSRS-2 in enzyme-linked immunosorbent assays. Recognition of the recombinant proteins by antibodies generated by exposure of sheep to the native enzyme indicates similar antigenicity of the two proteins.
Read full abstract