Abstract

The aim of the study was to purify and characterise recombinant proteins with the potential as an anti-parasite vaccine. Full-length cDNAs encoding seryl-tRNA synthetase (srs-2) were cloned from Haemonchus contortus (HcSRS-2) and Teladorsagia circumcincta (TcSRS-2). TcSRS-2 and HcSRS-2 cDNA (1458bp) encoded proteins of 486 amino acids, each of which was present as a single band of about 55 kDa on SDS-PAGE. Multiple alignments of the protein sequences showed homology of 94% between TcSRS-2 and HcSRS-2, 76–93% with SRS-2s of eight nematodes and 68% with Mus musculus SRS-2. The predicted three-dimensional structures revealed an overall structural homology of TcSRS-2 and HcSRS-2, highly conserved binding and catalytic sites, and minor differences in the tautomerase binding site residues in other nematode SRS-2 homologues. A phylogenetic tree was constructed using helminth and mammalian SRS-2 sequences. Soluble C-terminal SRS-2 proteins were expressed in Escherichia coli strain AY2.4 and purified. Recombinant HcSRS-2 assay shows that the recombinant enzyme was active and stable. The Km and Vmax for ATP were 3.9 ± 1.0 μM and 2.7 ± 0.1 μmol min−1 mg−1 protein, respectively. Antibodies in serum and saliva from field-immune, but not nematode-naïve, sheep recognised recombinant HcSRS-2 and TcSRS-2 in enzyme-linked immunosorbent assays. Recognition of the recombinant proteins by antibodies generated by exposure of sheep to the native enzyme indicates similar antigenicity of the two proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.