The delivery of organic carbon (C) from rivers to the coastal ocean via estuaries is recognized as an important component of the global C budget however, smaller river systems are often overlooked and modern flux estimates are not very different from historical estimates. Here, the seasonal (wet vs. dry) concentration and fluxes of dissolved organic C (DOC) were measured in five small sub-tropical rivers that drain into the Tampa Bay (FL, USA) estuary. DOC distributions were highly variable among riverine, mesohaline, and marine end-member samples in all river catchments and no significant differences were observed among or between DOC concentrations with respect to river catchment, season, or year of sampling. In general, DOC mixed non-conservatively during the wet seasons, and conservatively during the dry seasons, with the estuarine reaches of each river serving as a sink of DOC. Fluxes were strongly tied to discharge irrespective of season, and the estuaries removed 15–65% of DOC prior to export to coastal Bay and Gulf of Mexico waters. DOC concentrations were similar to others reported for low-elevation sub-tropical rivers, and a combination of elevation, residence time, and climate appear to control the abundance and variability of DOC in sub-tropical vs. tropical river systems. The characterization of DOC in small, sub-tropical rivers, which share characteristics with both their temperate and tropical counterparts, is critical for quantitatively constraining the importance of these systems in local-to-regional scale ocean C budgets. In addition to geomorphic properties, the role of past, present, and future land cover and other environmental change in small coastal rivers also exerts control on the quantity and flux of DOC in these systems.
Read full abstract