As a representative example of an environmental chemical carcinogen, MNNG exposure is closely associated with the onset of gastric cancer (GC) where N6-methyladenosine (m6A) RNA methylation tends to be the critical epigenetic event. However, the effect of m6A modification on long non-coding RNAs (lncRNAs) in MNNG-induced GC onset is still unclear. To address the above issue, based on the Methylated RNA immunoprecipitation sequencing (MeRIP-seq) data of MNNG-induced malignant cells (MCs) and GC cells, we comprehensively analyzed the MNNG exposure-associated vital lncRNAs. MeRIP-seq analysis identified 1432 lncRNA transcripts in the MC cell, and 3520 lncRNA transcripts were found to be m6A modified in the GC cell, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that MNNG exposure could spark cellular localization change, which might be the critical cellular note variation for malignant transformation. We demonstrated that METTL3 is responsible for N6 methylation of lncRNAs and identified SNHG7 as a downstream target of METTL3. More importantly, we observed that SNHG7 was progressively up-regulated during gastric carcinogenesis by MNNG exposure. Finally, we investigated SNHG7 expression in different stages of GC malignancies and found that elevated SNHG7 expression correlated with advanced clinical features and poor prognosis in GC. In conclusion, our study found for the first time that METTL3 regulates the m6A methylation level of lncRNA SNHG7 and its expression in MNNG exposure-induced GC, suggesting that SNHG7 as a predictive biomarker or therapeutic target for GC.
Read full abstract