Bacterial and eukaryotic dihydrofolate reductase (DHFR) enzymes are essential for DNA synthesis and are differentially sensitive to the competitive inhibitors trimethoprim and methotrexate. Unexpectedly, trimethoprim did not reduce Wolbachia abundance, and the wStri DHFR homolog contained amino acid substitutions associated with trimethoprim resistance in E. coli. A phylogenetic tree showed good association of DHFR protein sequences with supergroup A and B assignments. In contrast, DHFR is not encoded by wFol (supergroup E) and wBm (supergroup D) or by genomes of the closely related genera Anaplasma, Ehrlichia, Neorickettsia, and possibly Orientia. In E. coli and humans, DHFR participates in a coupled reactions with the conventional thymidylate synthase (TS) encoded by thyA to produce the dTMP required for DNA synthesis. In contrast, Wolbachia and other Rickettsiales express the unconventional FAD-TS enzyme encoded by thyX, even when folA is present. The exclusive use of FAD-TS suggests that Wolbachia DHFR provides a supplementary rather than an essential function for de novo synthesis of dTMP, possibly reflecting the relative availability of, and competing demands for, FAD and NAD coenzymes in the diverse intracellular environments of its hosts. Whether encoded by thyA or thyX, TS produces dTMP by transferring a methyl group from methylene tetrahydrofolate to dUMP. In the Rickettsiales, serine hydroxymethyltransferase (SMHT), encoded by a conserved glyA gene, regenerates methylene tetrahydrofolate. Unlike thyA, thyX lacks a human counterpart and thus provides a potential target for the treatment of infections caused by pathogenic members of the Rickettsiales.
Read full abstract