Dimethylsilanediol (DMSD) is the degradation product of methylsiloxane polymers and oligomers such as volatile cyclic methylsiloxanes (cVMS). To better understand the environmental fate of this key degradation product, we conducted a three-part study on the movement of DMSD in soil. The objective of this third and final study was to determine the fate of DMSD in soil-plant systems under constant irrigation. Soil columns were constructed using two soils with the upper 20 cm layers spiked with 14C-labeled DMSD. Corn seedlings were transplanted into the soil columns and placed in a field plot underneath a transparent cover that prevented rainwater from reaching the soil columns while allowing soil water to be volatilized freely. The soil-plant columns were regularly irrigated with known amounts of DMSD-free plant growth solution to sustain the plant growth. At pre-determined time intervals (15–67 days), the plant and soil columns were sectioned and the distribution of 14Corganosilicon species in the soil profile and plant parts was determined using a combination of Liquid Scintillation Counting and High-Performance Liquid Chromatography-Flow Scintillation Analysis, while soil water loss was determined gravimetrically. It was found that the majority (>92 %) of DMSD initially spiked into the soil was removed from the soil-plant systems. Although DMSD was transported from the soil to the plant, it was subsequently volatilized from the plant via transpiration, with only a small fraction (∼5%) remaining at the conclusion of the experiments. In addition, little non-extractable DMSD was found in the top layer of soil in the soil-plant systems, suggesting that the air-drying of soil is a necessary pre-condition for the formation of such non-extractable silanol residue on topsoil.
Read full abstract