Middle ear cholesteatoma is a non-tumorous condition that typically leads to hearing loss, bone destruction, and other severe complications. Despite surgery being the primary treatment, the recurrence rate remains high. Therefore, exploring the molecular mechanisms underlying cholesteatoma is crucial for discovering new therapeutic approaches. This study aims to explore the involvement of N6-methyladenosine (m6A) methylation in long non-coding RNAs (lncRNAs) in the biological functions and related pathways of middle ear cholesteatoma. The m6A modification patterns of lncRNA in middle ear cholesteatoma tissues (n=5) and normal post-auricular skin tissues (n=5) were analyzed using an lncRNA m6A transcriptome microarray. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to identify potential biological functions and signaling pathways involved in the pathogenesis of middle ear cholesteatoma. Methylated RNA immunoprecipitation (MeRIP)-PCR was used to validate the m6A modifications in cholesteatoma and normal skin tissues. Compared with normal skin tissues, 1 525 lncRNAs were differentially methylated in middle ear cholesteatoma tissues, with 1 048 showing hypermethylation and 477 showing hypomethylation [fold change (FC)≥3 or <1/3, P<0.05]. GO enrichment analysis indicated that hypermethylated lncRNAs were involved in protein phosphatase inhibitor activity, neuron-neuron synapse, and regulation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activity. Hypomethylated lncRNAs were associated with mRNA methyltransferase activity, secretory granule membrane, and mRNA methylation. KEGG analysis revealed that hypermethylated lncRNAs were mainly associated with 5 pathways: the Hedgehog signaling pathway, viral protein interaction with cytokines and cytokine receptors, mitogen-activated protein kinase (MAPK) signaling pathway, cytokine-cytokine receptor interaction, and adrenergic signaling in cardiomyocytes. Hypomethylated lncRNAs were mainly involved in 4 pathways: Renal cell carcinoma, tumor necrosis factor signaling pathway, transcriptional misregulation in cancer, and cytokine-cytokine receptor interaction. Additionally, MeRIP-PCR confirmed the changes in m6A methylation levels in NR_033339, NR_122111, NR_130744, and NR_026800, consistent with microarray analysis. Real-time PCR also confirmed the significant upregulation of MAPK1 and NF-κB, key genes in the MAPK signaling pathway. This study reveals the m6A modification patterns of lncRNAs in middle ear cholesteatoma, suggests a direction for further research into the role of lncRNA m6A modification in the etiology of cholesteatoma. The findings provide potential therapeutic targets for the treatment of middle ear cholesteatoma.
Read full abstract