The aim of this study was to better characterize rabbit proximal kidney tubule cells cultured on collagen IV-coated porous inserts, as compared to the same cells seeded in standard plastic wells. Total protein contents in confluent monolayers on permeable membranes were about twofold higher than those measured in confluent cultures in plastic wells. Microscopy examinations suggested that such a difference was probably due to a higher cell density and to an impressive development of the apical brush-border membrane. Moreover, measurement of unidirectional transport of p-aminohippuric acid and tetraethylammonium bromide confirmed the high polarization level of cultures on porous inserts. Results of methyl(alpha-D-[U-14C]glyco)pyranoside uptake suggested that cell phenotype was probably influenced by culture conditions. Analysis of different markers as a function of time in culture showed decreases of alkaline phosphatase (AP), gamma-glutamyltranspeptidase (GGT), and Na(+)-K(+)-ATPase activities as well as increases in LDH, ATP, and glutathione levels, similar to those formerly reported for cells cultured in standard plastic plates. However, comparative data from 6-d-old monolayers have shown that AP, GGT, Na(+)-K(+)-ATPase, glutathione reductase (GRED), and selenium-dependent glutathione peroxidase (Se-GPX) activities were 2.8-, 2.6-, 1.6-, 1.2-, and 2.1-fold, respectively, better preserved on precoated permeable membranes. On the other hand, this paper reports for the first time in the literature that GRED and SE-GPX, two phase II detoxification enzymes, were well maintained in cultures of rabbit proximal kidney tubule cells. Our results show that culturing rabbit proximal kidney tubule cells on collagen IV-coated porous membranes was accompanied by an improvement of both morphological and biochemical properties of the cells.
Read full abstract