Vibrational spectroscopy and GC–MS were used to investigate the effect of MnO2 and α-Fe2O3 on the degradation of methyl linoleate and vegetal and animal fatty. The metal oxides are among the most employed pigments in rock art paintings, whereas the organic compounds were used to mimic organic binders potentially used in such paintings.Both oxides were very effective in the catalytic oxidation of the organic substrates and light had no significant effect, qualitatively or quantitatively, on the final products. In the case of methyl linoleate without metal oxide, the effect of light (visible) was investigated and it was demonstrated that the samples kept in the dark produced relatively less oxidation products, although the main products were the same (hexanal, methyl 9-oxononanoate and methyl octanoate). In the presence of MnO2 and α-Fe2O3 methyl 9-oxononanoate was the main product, followed by hexanal. The spectral patterns of the oxidation products were different for manganese and iron oxide and GC–MS demonstrated that more compounds are formed in the former than with α-Fe2O3. Vegetal and animal fatty presented the same behavior that methyl linoleate did.The results here reported indicated that the two pigments considered actively contribute to fat degradation and the presence of inorganic pigments is the main factor to take into account when organic binders degradation in rock art paintings are investigated.