Abstract Four methyl cellulose samples in the degree of substitution range from 0.5 to 2.0 were characterised by combination of different analytical methods. Samples were analysed regarding their partial degree of substitution by hydrolysis and anion exchange chromatography with pulsed amperometric detection. For calibration of the chromatographic system, standard substances were isolated by preparative HPLC and their structure was confirmed by 13C-NMR spectroscopy. For two methyl cellulose samples per-acetylation and 13C-NMR with inverse gated decoupling was carried out for comparison with the chromatographic analysis. Endoglucanase fragmentation of methyl celluloses was performed and water-soluble and insoluble fractions were analysed separately. A preparative size exclusion chromatography system for enzymatic-degraded water-soluble methyl cellulose was developed and the molar masses of the individual fractions were examined by analytical size exclusion chromatography. By combination of endoglucanase fragmentation, preparative chromatography, hydrolysis and anion exchange chromatography an approach for the analysis of the substitutent distribution along the polymeric chain of water-soluble methyl cellulose could be established.