Developing large-scale platinum (Pt) alloys that simultaneously exhibit high formic acid oxidation reaction (FAOR) activity and robust CO tolerance remains a significant challenge for practical fuel cell applications. Here, a facile and universal in situ synthesis approach is presented to create ultrathin platinum-tellurium nanosheets on carbon support (PtTe2 NSs/C), which enables high CO tolerance and FAOR activity while achieving the massive production of PtTe2 NSs/C. Specifically, the 10-gram-scale PtTe2 NSs/C achieves exceptional specific activity and mass activity of 14.3mA cm-2 and 3.6 A mgPt -1, respectively, which are 52.9 and 22.5 times greater than those of commercial Pt/C. Moreover, the 10-gram-scale PtTe2 NS/C exhibits significantly higher FAOR stability than pristine Pt NSs/C and commercial Pt/C. Detailed mechanism and computational investigations collectively reveal that the integration of Te into Pt lattices enhances the utilization of Pt while constructing high-density unsaturated "Pt-Te sites" on the surface of PtTe2 NSs/C, conferring high CO tolerance to PtTe2 NSs/C and thus substantially enhancing the FAOR activity. This work contributes to providing a universal method for scaling up next-generation high-performing FAOR catalysts.
Read full abstract