In the context of chronic liver diseases, where variability in progression necessitates early and precise diagnosis, this study addresses the limitations of traditional histological analysis and the shortcomings of existing deep learning approaches. A novel patch-level classification model employing multi-scale feature extraction and fusion was developed to enhance the grading accuracy and interpretability of liver biopsies, analyzing 1322 cases across various staining methods. The study also introduces a slide-level aggregation framework, comparing different diagnostic models, to efficiently integrate local histological information. Results from extensive validation show that the slide-level model consistently achieved high F1 scores, notably 0.9 for inflammatory activity and steatosis, and demonstrated rapid diagnostic capabilities with less than one minute per slide on average. The patch-level model also performed well, with an F1 score of 0.64 for ballooning and 0.99 for other indicators, and proved transferable to public datasets. The conclusion drawn is that the proposed analytical framework offers a reliable basis for the diagnosis and treatment of chronic liver diseases, with the added benefit of robust interpretability, suggesting its practical utility in clinical settings.
Read full abstract